A quantitative weight-of-evidence method for confidence assessment of adverse outcome pathway networks: a case study on chemical-induced liver steatosis.

Fecha de publicación: Fecha Ahead of Print:

Autores de IIS La Fe

Participantes ajenos a IIS La Fe

  • Verhoeven, Anouk
  • van Ertvelde, Jonas
  • Boeckmans, Joost
  • Gatzios, Alexandra
  • Lindeman, Birgitte
  • Lopez-Soop, Graciela
  • Rodrigues, Robim M.
  • Rapisarda, Anna
  • Sanz-Serrano, Julen
  • Stinckens, Marth
  • Sepehri, Sara
  • Teunis, Marc
  • Vinken, Mathieu
  • Jiang, Jian
  • Vanhaecke, Tamara

Grupos

Abstract

The field of chemical toxicity testing is undergoing a transition to overcome the limitations of in vivo experiments. This evolution involves implementing innovative non-animal approaches to improve predictability and provide a more precise understanding of toxicity mechanisms. Adverse outcome pathway (AOP) networks are pivotal in organizing existing mechanistic knowledge related to toxicological processes. However, these AOP networks are dynamic and require regular updates to incorporate the latest data. Regulatory challenges also persist due to concerns about the reliability of the information they offer. This study introduces a generic Weight-of-Evidence (WoE) scoring method, aligned with the tailored Bradford-Hill criteria, to quantitatively assess the confidence levels in key event relationships (KERs) within AOP networks. We use the previously published AOP network on chemical-induced liver steatosis, a prevalent form of human liver injury, as a case study. Initially, the existing AOP network is optimized with the latest scientific information extracted from PubMed using the free SysRev platform for artificial intelligence (AI)-based abstract inclusion and standardized data collection. The resulting optimized AOP network, constructed using Cytoscape, visually represents confidence levels through node size (key event, KE) and edge thickness (KERs). Additionally, a Shiny application is developed to facilitate user interaction with the dataset, promoting future updates. Our analysis of 173 research papers yielded 100 unique KEs and 221 KERs among which 72 KEs and 170 KERs, respectively, have not been previously documented in the prior AOP network or AOP-wiki. Notably, modifications in de novo lipogenesis, fatty acid uptake and mitochondrial beta-oxidation, leading to lipid accumulation and liver steatosis, garnered the highest KER confidence scores. In conclusion, our study delivers a generic methodology for developing and assessing AOP networks. The quantitative WoE scoring method facilitates in determining the level of support for KERs within the optimized AOP network, offering valuable insights into its utility in both scientific research and regulatory contexts. KERs supported by robust evidence represent promising candidates for inclusion in an in vitro test battery for reliably predicting chemical-induced liver steatosis within regulatory frameworks.

Copyright © 2024 Elsevier B.V. All rights reserved.

Datos de la publicación

ISSN/ISSNe:
0300-483X, 1879-3185

Toxicology  ELSEVIER IRELAND LTD

Tipo:
Article
Páginas:
153814-153814
Factor de Impacto:
0,778 SCImago
Cuartil:
Q2 SCImago

Documentos

  • No hay documentos

Métricas

Filiaciones

Filiaciones no disponibles

Keywords

  • Bradford-Hill criteria; adverse outcome pathway; artificial intelligence; chemical toxicity; steatosis; weight-of-evidence

Proyectos asociados

DESARROLLO DE UN MODELO HEPATOCELULAR HUMANO DIFERENCIADO PARA ESTUDIOS DE METABOLISMO Y POTENCIAL INDUCTOR DE NUEVOS FARMACOS

Investigador Principal: JOSÉ VICENTE CASTELL RIPOLL

SAF2003-09353 . 2003

DEVELOPMENT OF A HIGH THROUGHPUT GENOMICS-BASED TEST FOR ASSESSING GENOTOXIC AND CARCINOGENIC PROPERTIES OF CHEMICAL COMPOUNDS IN VITRO

Investigador Principal: JOSÉ VICENTE CASTELL RIPOLL

CARCINOGENOMICS . COMISION EUROPEA . 2006

LINTOP

Investigador Principal: JOSÉ VICENTE CASTELL RIPOLL

LSHB-CT-2006-037499 - LINTOP . FUNDACIÓN PARA LA INVESTIGACIÓN DEL HOSPITAL UNIVERSITARIO LA FE DE LA COMUNIDAD VALENCIANA . 2005

MECANISMOS TRNACRIPCIONALES IMPLICADOS EN LA ETIOLOGIA DEL HIGADO GRASO NO ALCOHOLICO. ESTUDIOS EN UN MODELO CELULAR HUMANO DE ESTEATOSIS Y APLICACION AL TRANSPLANTE DE HEPATOCITOS EN TERAPIA CELULAR.

Investigador Principal: RAMIRO JOVER ATIENZA

PI07/0550 . INSTITUTO DE SALUD CARLOS III . 2007

MECANISMOS TRANSCRIPCIONALES IMPLICADOS EN EL HIGADO GRASO NO ALCOHOLICO DE ORIGEN METABOLICO E IATROGENICO: INFLUENCIA DE LA RESISTENCIA A LA INSULINA

Investigador Principal: RAMIRO JOVER ATIENZA

PI10/00194 . INSTITUTO DE SALUD CARLOS III . 2010

ESTEATOSIS HEPÁTICA POR MEDICAMENTOS: NUEVOS MECANISMOS Y BIOMARCADORES APLICABLES AL DESARROLLO FARMACÉUTICO Y A UNA TERAPIA MÁS RACIONAL EN PACIENTES CON SÍNDROME METABÓLICO.

Investigador Principal: RAMIRO JOVER ATIENZA

PI13/01470 . INSTITUTO DE SALUD CARLOS III; FUNDACIÓN PARA LA INVESTIGACIÓN DEL HOSPITAL UNIVERSITARIO LA FE DE LA COMUNIDAD VALENCIANA . 2014

Nuevos mecanismos y biomarcadores diagnósticos en la colestasis iatrogénica.

Investigador Principal: RAMIRO JOVER ATIENZA

PI17/01089 . INSTITUTO DE SALUD CARLOS III . 2018

Susceptibility factors and non-invasive biomarkers for liver steatosis induced by valproate in pediatric epileptic patients.

Investigador Principal: RAMIRO JOVER ATIENZA

PI20/00690 . INSTITUTO DE SALUD CARLOS III . 2021

YO INVESTIGO RAMIRO JOVER

Investigador Principal: RAMIRO JOVER ATIENZA

INVEST/2022/76 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2022

Cita

Compartir