The mechanistic functional landscape of retinitis pigmentosa: a machine learning-driven approach to therapeutic target discovery

Autores de IIS La Fe
Participantes ajenos a IIS La Fe
- Esteban-Medina, Marina
- Loucera, Carlos
- Rian, Kinza
- Pena-Chilet, Maria
Grupos
Abstract
BackgroundRetinitis pigmentosa is the prevailing genetic cause of blindness in developed nations with no effective treatments. In the pursuit of unraveling the intricate dynamics underlying this complex disease, mechanistic models emerge as a tool of proven efficiency rooted in systems biology, to elucidate the interplay between RP genes and their mechanisms. The integration of mechanistic models and drug-target interactions under the umbrella of machine learning methodologies provides a multifaceted approach that can boost the discovery of novel therapeutic targets, facilitating further drug repurposing in RP.MethodsBy mapping Retinitis Pigmentosa-related genes (obtained from Orphanet, OMIM and HPO databases) onto KEGG signaling pathways, a collection of signaling functional circuits encompassing Retinitis Pigmentosa molecular mechanisms was defined. Next, a mechanistic model of the so-defined disease map, where the effects of interventions can be simulated, was built. Then, an explainable multi-output random forest regressor was trained using normal tissue transcriptomic data to learn causal connections between targets of approved drugs from DrugBank and the functional circuits of the mechanistic disease map. Selected target genes involvement were validated on rd10 mice, a murine model of Retinitis Pigmentosa.ResultsA mechanistic functional map of Retinitis Pigmentosa was constructed resulting in 226 functional circuits belonging to 40 KEGG signaling pathways. The method predicted 109 targets of approved drugs in use with a potential effect over circuits corresponding to nine hallmarks identified. Five of those targets were selected and experimentally validated in rd10 mice: Gabre, Gabra1 (GABAR alpha 1 protein), Slc12a5 (KCC2 protein), Grin1 (NR1 protein) and Glr2a. As a result, we provide a resource to evaluate the potential impact of drug target genes in Retinitis Pigmentosa.ConclusionsThe possibility of building actionable disease models in combination with machine learning algorithms to learn causal drug-disease interactions opens new avenues for boosting drug discovery. Such mechanistically-based hypotheses can guide and accelerate the experimental validations prioritizing drug target candidates. In this work, a mechanistic model describing the functional disease map of Retinitis Pigmentosa was developed, identifying five promising therapeutic candidates targeted by approved drug. Further experimental validation will demonstrate the efficiency of this approach for a systematic application to other rare diseases.
© 2024. The Author(s).
Datos de la publicación
- ISSN/ISSNe:
- 1479-5876, 1479-5876
- Tipo:
- Article
- Páginas:
- 139-139
- Factor de Impacto:
- 1,570 SCImago ℠
- Cuartil:
- Q1 SCImago ℠
JOURNAL OF TRANSLATIONAL MEDICINE BMC
Documentos
- No hay documentos
Filiaciones
Filiaciones no disponibles
Keywords
- Retinitis pigmentosa; Rare diseases; Drug-repurposing; Disease maps; GABAergic neurotransmission; Systems medicine; Target-discovery
Proyectos asociados
ESTUDIO DE VARIANTES DE SPLICING IDENTIFICADAS EN PACIENTES CON SÍNDROME DE USHER DE LA COMUNIDAD VALENCIANA A PARTIR DE CELULAS CILIADAS NASALES.
Investigador Principal: TERESA JAIJO SANCHÍS
GV/2012/028 . 2012
EFECTO DE LA MODULACION DEL FACTOR INDUCIBLE POR HIPOXIA (HIF) SOBRE LA DEGENERACION RETINIANA EN RETINOSIS PIGMENTARIA
Investigador Principal: REGINA RODRIGO NICOLÁS
PI12/00481 . INSTITUTO DE SALUD CARLOS III; FUNDACIÓN PARA LA INVESTIGACIÓN DEL HOSPITAL UNIVERSITARIO LA FE DE LA COMUNIDAD VALENCIANA . 2013
COMPREHENSIVE, INTEGRATIVE AND GENOMIC APPROACH TO THE UNDERSTANDING AND TREATMENT OF CANCER AND LEUKEMIA.
Investigador Principal: MIGUEL ÁNGEL SANZ ALONSO
PIE13/00046 . INSTITUTO DE SALUD CARLOS III; FUNDACIÓN PARA LA INVESTIGACIÓN DEL HOSPITAL UNIVERSITARIO LA FE DE LA COMUNIDAD VALENCIANA . 2014
APLICACIÓN DE LA NANOTECNOLOGÍA AL TRATAMIENTO DE RETINOSIS PIGMENTARIA CON ANTICUERPOS ANTI_TNF ALFA. EFECTO SINÉRGICO CON ANTIOXIDANTES
Investigador Principal: REGINA RODRIGO NICOLÁS
PI15/00052 . INSTITUTO DE SALUD CARLOS III . 2016
Desarrollo de nanoterapias anti-inflamatorias en retinosis pigmentaria.
Investigador Principal: REGINA RODRIGO NICOLÁS
PI18/00252 . INSTITUTO DE SALUD CARLOS III . 2019
ESTUDIO PARA EVALUAR LA PROTECCIÓN FRENTE A LA CARCINOGÉNESIS CUTÁNEA OBTENIDA CON UN FOTOPROTECTOR TÓPICO DE NUEVA FORMULACIÓN.
Investigador Principal: RAFAEL BOTELLA ESTRADA
P15103A - H360 AK . 2017
ENSAYO CLÍNICO PROSPECTIVO ALEATORIZADO QUE COMPARA LENTES INTRAOCULARES DE PROFUNDIDAD DE ENFOQUE AMPLIADA CON UNA LENTE INTRAOCULAR MONOFOCAL.
Investigador Principal: DAVID SALOM ALONSO
ATLARA829MPBER-401-16 . 2017
ESTUDIO DE LA EFICACIA Y SEGURIDAD DE LIRAGLUTIDA EN EL MANEJO DEL PACIENTE DIABÉTICO TIPO 2 HOSPITALIZADO CON SÍNDROME CORONARIO AGUDO. IMPACTO SOBRE FACTOR DE RIESGO CARDIOVASCULAR.
Investigador Principal: JUAN FRANCISCO MERINO TORRES
SCALES . 2015
Reclutado endógeno de desaminasas mediante el sistema LEAPER2.0 para editar variantes patogénicas G>A en el RNA in vitro e in vivo
Investigador Principal: JOSÉ MARÍA MILLÁN SALVADOR
2023_833_1_ACCI_U755-Chema Millán . CIBER ENFERMEDADES RARAS . 2023
Cita
Esteban M,Loucera C,Rian K,Velasco S,Olivares L,Rodrigo R,Dopazo J,Pena M. The mechanistic functional landscape of retinitis pigmentosa: a machine learning-driven approach to therapeutic target discovery. J Transl Med. 2024. 22. (1):p. 139-139. IF:6,100. (1).