The mechanistic functional landscape of retinitis pigmentosa: a machine learning-driven approach to therapeutic target discovery

Fecha de publicación: Fecha Ahead of Print:

Autores de IIS La Fe

Participantes ajenos a IIS La Fe

  • Esteban-Medina, Marina
  • Loucera, Carlos
  • Rian, Kinza
  • Pena-Chilet, Maria

Grupos

Abstract

BackgroundRetinitis pigmentosa is the prevailing genetic cause of blindness in developed nations with no effective treatments. In the pursuit of unraveling the intricate dynamics underlying this complex disease, mechanistic models emerge as a tool of proven efficiency rooted in systems biology, to elucidate the interplay between RP genes and their mechanisms. The integration of mechanistic models and drug-target interactions under the umbrella of machine learning methodologies provides a multifaceted approach that can boost the discovery of novel therapeutic targets, facilitating further drug repurposing in RP.MethodsBy mapping Retinitis Pigmentosa-related genes (obtained from Orphanet, OMIM and HPO databases) onto KEGG signaling pathways, a collection of signaling functional circuits encompassing Retinitis Pigmentosa molecular mechanisms was defined. Next, a mechanistic model of the so-defined disease map, where the effects of interventions can be simulated, was built. Then, an explainable multi-output random forest regressor was trained using normal tissue transcriptomic data to learn causal connections between targets of approved drugs from DrugBank and the functional circuits of the mechanistic disease map. Selected target genes involvement were validated on rd10 mice, a murine model of Retinitis Pigmentosa.ResultsA mechanistic functional map of Retinitis Pigmentosa was constructed resulting in 226 functional circuits belonging to 40 KEGG signaling pathways. The method predicted 109 targets of approved drugs in use with a potential effect over circuits corresponding to nine hallmarks identified. Five of those targets were selected and experimentally validated in rd10 mice: Gabre, Gabra1 (GABAR alpha 1 protein), Slc12a5 (KCC2 protein), Grin1 (NR1 protein) and Glr2a. As a result, we provide a resource to evaluate the potential impact of drug target genes in Retinitis Pigmentosa.ConclusionsThe possibility of building actionable disease models in combination with machine learning algorithms to learn causal drug-disease interactions opens new avenues for boosting drug discovery. Such mechanistically-based hypotheses can guide and accelerate the experimental validations prioritizing drug target candidates. In this work, a mechanistic model describing the functional disease map of Retinitis Pigmentosa was developed, identifying five promising therapeutic candidates targeted by approved drug. Further experimental validation will demonstrate the efficiency of this approach for a systematic application to other rare diseases.

© 2024. The Author(s).

Datos de la publicación

ISSN/ISSNe:
1479-5876, 1479-5876

JOURNAL OF TRANSLATIONAL MEDICINE  BMC

Tipo:
Article
Páginas:
139-139
Factor de Impacto:
1,570 SCImago
Cuartil:
Q1 SCImago

Documentos

  • No hay documentos

Métricas

Filiaciones

Filiaciones no disponibles

Keywords

  • Retinitis pigmentosa; Rare diseases; Drug-repurposing; Disease maps; GABAergic neurotransmission; Systems medicine; Target-discovery

Proyectos asociados

ESTUDIO DE VARIANTES DE SPLICING IDENTIFICADAS EN PACIENTES CON SÍNDROME DE USHER DE LA COMUNIDAD VALENCIANA A PARTIR DE CELULAS CILIADAS NASALES.

Investigador Principal: TERESA JAIJO SANCHÍS

GV/2012/028 . 2012

EFECTO DE LA MODULACION DEL FACTOR INDUCIBLE POR HIPOXIA (HIF) SOBRE LA DEGENERACION RETINIANA EN RETINOSIS PIGMENTARIA

Investigador Principal: REGINA RODRIGO NICOLÁS

PI12/00481 . INSTITUTO DE SALUD CARLOS III; FUNDACIÓN PARA LA INVESTIGACIÓN DEL HOSPITAL UNIVERSITARIO LA FE DE LA COMUNIDAD VALENCIANA . 2013

COMPREHENSIVE, INTEGRATIVE AND GENOMIC APPROACH TO THE UNDERSTANDING AND TREATMENT OF CANCER AND LEUKEMIA.

Investigador Principal: MIGUEL ÁNGEL SANZ ALONSO

PIE13/00046 . INSTITUTO DE SALUD CARLOS III; FUNDACIÓN PARA LA INVESTIGACIÓN DEL HOSPITAL UNIVERSITARIO LA FE DE LA COMUNIDAD VALENCIANA . 2014

APLICACIÓN DE LA NANOTECNOLOGÍA AL TRATAMIENTO DE RETINOSIS PIGMENTARIA CON ANTICUERPOS ANTI_TNF ALFA. EFECTO SINÉRGICO CON ANTIOXIDANTES

Investigador Principal: REGINA RODRIGO NICOLÁS

PI15/00052 . INSTITUTO DE SALUD CARLOS III . 2016

Desarrollo de nanoterapias anti-inflamatorias en retinosis pigmentaria.

Investigador Principal: REGINA RODRIGO NICOLÁS

PI18/00252 . INSTITUTO DE SALUD CARLOS III . 2019

ESTUDIO PARA EVALUAR LA PROTECCIÓN FRENTE A LA CARCINOGÉNESIS CUTÁNEA OBTENIDA CON UN FOTOPROTECTOR TÓPICO DE NUEVA FORMULACIÓN.

Investigador Principal: RAFAEL BOTELLA ESTRADA

P15103A - H360 AK . 2017

ENSAYO CLÍNICO PROSPECTIVO ALEATORIZADO QUE COMPARA LENTES INTRAOCULARES DE PROFUNDIDAD DE ENFOQUE AMPLIADA CON UNA LENTE INTRAOCULAR MONOFOCAL.

Investigador Principal: DAVID SALOM ALONSO

ATLARA829MPBER-401-16 . 2017

ESTUDIO DE LA EFICACIA Y SEGURIDAD DE LIRAGLUTIDA EN EL MANEJO DEL PACIENTE DIABÉTICO TIPO 2 HOSPITALIZADO CON SÍNDROME CORONARIO AGUDO. IMPACTO SOBRE FACTOR DE RIESGO CARDIOVASCULAR.

Investigador Principal: JUAN FRANCISCO MERINO TORRES

SCALES . 2015

Reclutado endógeno de desaminasas mediante el sistema LEAPER2.0 para editar variantes patogénicas G>A en el RNA in vitro e in vivo

Investigador Principal: JOSÉ MARÍA MILLÁN SALVADOR

2023_833_1_ACCI_U755-Chema Millán . CIBER ENFERMEDADES RARAS . 2023

Cita

Compartir