Optimization of an adverse outcome pathway network on chemical-induced cholestasis using an artificial intelligence-assisted data collection and confidence level quantification approach.

Autores de IIS La Fe
Participantes ajenos a IIS La Fe
- Ertvelde, Jonas van
- Verhoeven, Anouk
- Maerten, Amy
- Cooreman, Axelle
- Santos Rodrigues, Bruna Dos
- Sanz-Serrano, Julen
- Mihajlovic, Milos
- Tripodi, Ignacio
- Teunis, Marc
- Luechtefeld, Thomas
- Vanhaecke, Tamara
- Jiang, Jian
- Vinken, Mathieu
Grupos
Abstract
BACKGROUND: Adverse outcome pathway (AOP) networks are versatile tools in toxicology and risk assessment that capture and visualize mechanisms driving toxicity originating from various data sources. They share a common structure consisting of a set of molecular initiating events and key events, connected by key event relationships, leading to the actual adverse outcome. AOP networks are to be considered living documents that should be frequently updated by feeding in new data. Such iterative optimization exercises are typically done manually, which not only is a time-consuming effort, but also bears the risk of overlooking critical data. The present study introduces a novel approach for AOP network optimization of a previously published AOP network on chemical-induced cholestasis using artificial intelligence to facilitate automated data collection followed by subsequent quantitative confidence assessment of molecular initiating events, key events, and key event relationships. METHODS: Artificial intelligence-assisted data collection was performed by means of the free web platform Sysrev. Confidence levels of the tailored Bradford-Hill criteria were quantified for the purpose of weight-of-evidence assessment of the optimized AOP network. Scores were calculated for biological plausibility, empirical evidence, and essentiality, and were integrated into a total key event relationship confidence value. The optimized AOP network was visualized using Cytoscape with the node size representing the incidence of the key event and the edge size indicating the total confidence in the key event relationship. RESULTS: This resulted in the identification of 38 and 135 unique key events and key event relationships, respectively. Transporter changes was the key event with the highest incidence, and formed the most confident key event relationship with the adverse outcome, cholestasis. Other important key events present in the AOP network include: nuclear receptor changes, intracellular bile acid accumulation, bile acid synthesis changes, oxidative stress, inflammation and apoptosis. CONCLUSIONS: This process led to the creation of an extensively informative AOP network focused on chemical-induced cholestasis. This optimized AOP network may serve as a mechanistic compass for the development of a battery of in vitro assays to reliably predict chemical-induced cholestatic injury.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Datos de la publicación
- ISSN/ISSNe:
- 1532-0464, 1532-0480
- Tipo:
- Article
- Páginas:
- 104465-104465
- Factor de Impacto:
- 1,128 SCImago ℠
- Cuartil:
- Q1 SCImago ℠
JOURNAL OF BIOMEDICAL INFORMATICS Elsevier Inc.
Documentos
- No hay documentos
Filiaciones
Filiaciones no disponibles
Keywords
- AOP network; Adverse outcome pathway; Cholestasis; Mechanistic toxicology; Shiny application
Proyectos asociados
DESARROLLO DE UN MODELO HEPATOCELULAR HUMANO DIFERENCIADO PARA ESTUDIOS DE METABOLISMO Y POTENCIAL INDUCTOR DE NUEVOS FARMACOS
Investigador Principal: JOSÉ VICENTE CASTELL RIPOLL
SAF2003-09353 . 2003
DEVELOPMENT OF A HIGH THROUGHPUT GENOMICS-BASED TEST FOR ASSESSING GENOTOXIC AND CARCINOGENIC PROPERTIES OF CHEMICAL COMPOUNDS IN VITRO
Investigador Principal: JOSÉ VICENTE CASTELL RIPOLL
CARCINOGENOMICS . COMISION EUROPEA . 2006
LINTOP
Investigador Principal: JOSÉ VICENTE CASTELL RIPOLL
LSHB-CT-2006-037499 - LINTOP . FUNDACIÓN PARA LA INVESTIGACIÓN DEL HOSPITAL UNIVERSITARIO LA FE DE LA COMUNIDAD VALENCIANA . 2005
MECANISMOS TRNACRIPCIONALES IMPLICADOS EN LA ETIOLOGIA DEL HIGADO GRASO NO ALCOHOLICO. ESTUDIOS EN UN MODELO CELULAR HUMANO DE ESTEATOSIS Y APLICACION AL TRANSPLANTE DE HEPATOCITOS EN TERAPIA CELULAR.
Investigador Principal: RAMIRO JOVER ATIENZA
PI07/0550 . INSTITUTO DE SALUD CARLOS III . 2007
MECANISMOS TRANSCRIPCIONALES IMPLICADOS EN EL HIGADO GRASO NO ALCOHOLICO DE ORIGEN METABOLICO E IATROGENICO: INFLUENCIA DE LA RESISTENCIA A LA INSULINA
Investigador Principal: RAMIRO JOVER ATIENZA
PI10/00194 . INSTITUTO DE SALUD CARLOS III . 2010
ESTEATOSIS HEPÁTICA POR MEDICAMENTOS: NUEVOS MECANISMOS Y BIOMARCADORES APLICABLES AL DESARROLLO FARMACÉUTICO Y A UNA TERAPIA MÁS RACIONAL EN PACIENTES CON SÍNDROME METABÓLICO.
Investigador Principal: RAMIRO JOVER ATIENZA
PI13/01470 . INSTITUTO DE SALUD CARLOS III; FUNDACIÓN PARA LA INVESTIGACIÓN DEL HOSPITAL UNIVERSITARIO LA FE DE LA COMUNIDAD VALENCIANA . 2014
Nuevos mecanismos y biomarcadores diagnósticos en la colestasis iatrogénica.
Investigador Principal: RAMIRO JOVER ATIENZA
PI17/01089 . INSTITUTO DE SALUD CARLOS III . 2018
Susceptibility factors and non-invasive biomarkers for liver steatosis induced by valproate in pediatric epileptic patients.
Investigador Principal: RAMIRO JOVER ATIENZA
PI20/00690 . INSTITUTO DE SALUD CARLOS III . 2021
YO INVESTIGO RAMIRO JOVER
Investigador Principal: RAMIRO JOVER ATIENZA
INVEST/2022/76 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2022
Cita
Ertvelde JV,Verhoeven A,Maerten A,Cooreman A,Santos BD,Sanz J,Mihajlovic M,Tripodi I,Teunis M,Jover R,Luechtefeld T,Vanhaecke T,Jiang J,Vinken M. Optimization of an adverse outcome pathway network on chemical-induced cholestasis using an artificial intelligence-assisted data collection and confidence level quantification approach. J Biomed Inform. 2023. 145. p. 104465-104465. IF:4,000. (2).