Testing an artificial intelligence algorithm to predict fetal heartbeat of vitrified-warmed blastocysts from a single image: predictive ability in different settings.

Fecha de publicación: Fecha Ahead of Print:

Autores de IIS La Fe

Participantes ajenos a IIS La Fe

  • Insua F
  • Marqueño S

Grupos

Abstract

STUDY QUESTION: Could an artificial intelligence (AI) algorithm predict fetal heartbeat from images of vitrified-warmed embryos? SUMMARY ANSWER: Applying AI to vitrified-warmed blastocysts may help predict which ones will result in implantation failure early enough to thaw another. WHAT IS KNOWN ALREADY: The application of AI in the field of embryology has already proven effective in assessing the quality of fresh embryos. Therefore, it could also be useful to predict the outcome of frozen embryo transfers, some of which do not recover their pre-vitrification volume, collapse, or degenerate after warming without prior evidence. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study included 1109 embryos from 792 patients. Of these, 568 were vitrified blastocysts cultured in time-lapse systems in the period between warming and transfer, from February 2022 to July 2023. The other 541 were fresh-transferred blastocysts serving as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: Four types of time-lapse images were collected: last frame of development of 541 fresh-transferred blastocysts (FTi), last frame of 467 blastocysts to be vitrified (PVi), first frame post-warming of 568 vitrified embryos (PW1i), and last frame post-warming of 568 vitrified embryos (PW2i). After providing the images to the AI algorithm, the returned scores were compared with the conventional morphology and fetal heartbeat outcomes of the transferred embryos (n = 1098). The contribution of the AI score to fetal heartbeat was analyzed by multivariate logistic regression in different patient populations, and the predictive ability of the models was measured by calculating the area under the receiver-operating characteristic curve (ROC-AUC). MAIN RESULTS AND THE ROLE OF CHANCE: Fetal heartbeat rate was related to AI score from FTi (P < 0.001), PW1i (P < 0.05), and PW2i (P < 0.001) images. The contribution of AI score to fetal heartbeat was significant in the oocyte donation program for PW2i (odds ratio (OR)=1.13; 95% CI [1.04-1.23]; P < 0.01), and in cycles with autologous oocytes for PW1i (OR = 1.18; 95% CI [1.01-1.38]; P < 0.05) and PW2i (OR = 1.15; 95% CI [1.02-1.30]; P < 0.05), but was not significantly associated with fetal heartbeat in genetically analyzed embryos. AI scores from the four groups of images varied according to morphological category (P < 0.001). The PW2i score differed in collapsed, non-re-expanded, or non-viable embryos compared to normal/viable embryos (P < 0.001). The predictability of the AI score was optimal at a post-warming incubation time of 3.3-4 h (AUC = 0.673). LIMITATIONS, REASONS FOR CAUTION: The algorithm was designed to assess fresh embryos prior to vitrification, but not thawed ones, so this study should be considered an external trial. WIDER IMPLICATIONS OF THE FINDINGS: The application of predictive software in the management of frozen embryo transfers may be a useful tool for embryologists, reducing the cancellation rates of cycles in which the blastocyst does not recover from vitrification. Specifically, the algorithm tested in this research could be used to evaluate thawed embryos both in clinics with time-lapse systems and in those with conventional incubators only, as just a single photo is required. STUDY FUNDING/COMPETING INTERESTS: This study was supported by the Regional Ministry of Innovation, Universities, Science and Digital Society of the Valencian Community (CIACIF/2021/019) and by Instituto de Salud Carlos III (PI21/00283), and co-funded by European Union (ERDF, 'A way to make Europe'). M.M. received personal fees in the last 5 years as honoraria for lectures from Merck, Vitrolife, MSD, Ferring, AIVF, Theramex, Gedeon Richter, Genea Biomedx, and Life Whisperer. There are no other competing interests. TRIAL REGISTRATION NUMBER: N/A.

© The Author(s) 2024. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Datos de la publicación

ISSN/ISSNe:
0268-1161, 1460-2350

HUMAN REPRODUCTION  OXFORD UNIV PRESS

Tipo:
Article
Páginas:
2240-2248
Factor de Impacto:
1,993 SCImago
Cuartil:
Q1 SCImago

Documentos

  • No hay documentos

Métricas

Filiaciones mostrar / ocultar

Keywords

  • artificial intelligence; blastocyst; fetal heartbeat; time-lapse; vitrification

Campos de estudio

Proyectos asociados

Estudio del efecto del estrés en la ventana de implantación y su influencia en el éxito reproductivo

Investigador Principal: PATRICIA DÍAZ GIMENO

FPU19/03247 . MINISTERIO DE CIENCIA E INNOVACION . 2020

Desarrollo de modelos de selección de embriones basados en inteligencia artificial para predecir las condiciones ideales que mejoren la probabilidad de éxito de un tratamiento de reproducción asistida.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

PI21/00283 . INSTITUTO DE SALUD CARLOS III . 2022

Efecto de la morfología y morfocinética del blastocisto biopsiado en la supervivencia y resultados clínicos después del procedimiento de vitrificación-desvitrificación.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

FPU20/03621 . MINISTERIO DE CIENCIA E INNOVACION; MINISTERIO DE UNIVERSIDADES . 2021

Desarrollo e implementación de un algoritmo basado en inteligencia artificial para la selección de embriones desvitrificados a partir de datos morfológicos, morfocinéticos y secretómicos

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

CIACIF/2021/019 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2022

Desarrollo funcional y clínico del algoritmo de Inteligencia Artificial SSE (Software para la Selección de Espermatozoides basado en IA) en tratamientos de fecundación in vitro (FIV).

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

CIACIF/2022/438 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2023

Estudio transcriptómico y secretómico de embriones euploides y aneuploides desde etapas preimplantacionales hasta etapas postimplantacionales tempranas. . AICO. Francisco Domínguez y Patricia Díaz

Investigador Principal: FRANCISCO DOMÍNGUEZ HERNÁNDEZ

CIAICO/2022/203 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2023

Cita

Compartir