Remarkable enhancement of cinnamaldehyde antimicrobial activity encapsulated in capped mesoporous nanoparticles: A new "nanokiller" approach in the era of antimicrobial resistance.

Fecha de publicación: Fecha Ahead of Print:

Autores de IIS La Fe

Participantes ajenos a IIS La Fe

  • Morellá-Aucejo Á
  • Medaglia S
  • Ruiz-Rico M
  • Bernardos A

Grupos

Abstract

Combating antimicrobial resistance is one of the biggest health challenges because of the ineffectiveness of standard biocide treatments. This challenge could be approached using natural products, which have demonstrated powerful therapeutics against multidrug-resistant microbes. In the present work, a nanodevice consisting of mesoporous silica nanoparticles loaded with an essential oil component (cinnamaldehyde) and functionalized with the polypeptide e-poly-l-lysine is developed and used as an antimicrobial agent. In the presence of the corresponding stimuli (i.e., exogenous proteolytic enzymes from bacteria or fungi), the polypeptide is hydrolyzed, and the cinnamaldehyde delivery is enhanced. The nanodevice's release mechanism and efficacy are evaluated in vitro against the pathogenic microorganisms Escherichia coli, Staphylococcus aureus, and Candida albicans. The results demonstrate that the new device increases the delivery of the cinnamaldehyde via a biocontrolled uncapping mechanism triggered by proteolytic enzymes. Moreover, the nanodevice notably improves the antimicrobial efficacy of cinnamaldehyde when compared to the free compound, ca. 52-fold for E. coli, ca. 60-fold for S. aureus, and ca. 7-fold for C. albicans. The enhancement of the antimicrobial activity of the essential oil component is attributed to the decrease of its volatility due to its encapsulation in the porous silica matrix and the increase of its local concentration when released due to the presence of microorganisms.

Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.

Datos de la publicación

ISSN/ISSNe:
2772-9508, 2772-9508

Biomaterials Advances  ELSEVIER

Tipo:
Article
Páginas:
213840-213840
PubMed:
38579520

Documentos

  • No hay documentos

Métricas

Filiaciones mostrar / ocultar

Keywords

  • Antimicrobial resistance; Cinnamaldehyde; Gated-nanodevice; Pathogenic microorganisms

Proyectos y Estudios Clínicos

NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMÉDICO

Investigador Principal: JUAN BAUTISTA SALOM SANVALERO

MAT2015-64139-C4-1-R . MINISTERIO DE ECONOMIA Y COMPETITIVIDAD . 2016

PROGRAMA TÉCNICO DE APOYO. MODALIDAD INFRAESTRUCTURA.

Investigador Principal: RAMÓN MARTÍNEZ MÁÑEZ

PTA2016-12603-1 . MINISTERIO DE ECONOMIA Y COMPETITIVIDAD . 2018

PLATAFORMA PARA LA DETECCIÓN DE PATÓGENOS BASADA EN MATERIALES CON PUERTAS MOLECULARES (PATH-GATE).

Investigador Principal: RAMÓN MARTÍNEZ MÁÑEZ

DTS18/00090 . INSTITUTO DE SALUD CARLOS III . 2019

Detección de patología cardiovascular en sangre con puertas moleculares del microRNA-4732-3p: una herramienta innovadora. (ACRÓNIMO GATE-4732-3p)

Investigador Principal: PILAR SEPÚLVEDA SANCHIS

DTS23/00017 . INSTITUTO DE SALUD CARLOS III . 2024

NUEVOS SISTEMAS DE DIAGNÓSTICO Y TRATAMIENTO BASADOS EN QUÍMICA SUPRAMOLECULAR Y NANOTECNOLOGÍA

Investigador Principal: RAMÓN MARTÍNEZ MÁÑEZ

INVEST/2023/443 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2023

Cita

Compartir