Application of a methodological framework for the development and multicenter validation of reliable artificial intelligence in embryo evaluation

Data de publicació:

Autors de IIS La Fe

Autors aliens a IIS La Fe

  • Gilboa, D.
  • Garg, Akhil
  • Shapiro, M.
  • Amar, Y.
  • Lustgarten, N.
  • Desai, N.
  • Shavit, T.
  • Silva, V.
  • Papatheodorou, A.
  • Chatziparasidou, A.
  • Angras, S.
  • Lee, J. H.
  • Thiel, L.
  • Curchoe, C. L.
  • Tauber, Y.
  • Seidman, D. S.

Grups d'Investigació

Abstract

Background Artificial intelligence (AI) models analyzing embryo time-lapse images have been developed to predict the likelihood of pregnancy following in vitro fertilization (IVF). However, limited research exists on methods ensuring AI consistency and reliability in clinical settings during its development and validation process. We present a methodology for developing and validating an AI model across multiple datasets to demonstrate reliable performance in evaluating blastocyst-stage embryos. Methods This multicenter analysis utilizes time-lapse images, pregnancy outcomes, and morphologic annotations from embryos collected at 10 IVF clinics across 9 countries between 2018 and 2022. The four-step methodology for developing and evaluating the AI model include: (I) curating annotated datasets that represent the intended clinical use case; (II) developing and optimizing the AI model; (III) evaluating the AI's performance by assessing its discriminative power and associations with pregnancy probability across variable data; and (IV) ensuring interpretability and explainability by correlating AI scores with relevant morphologic features of embryo quality. Three datasets were used: the training and validation dataset (n = 16,935 embryos), the blind test dataset (n = 1,708 embryos; 3 clinics), and the independent dataset (n = 7,445 embryos; 7 clinics) derived from previously unseen clinic cohorts. Results The AI was designed as a deep learning classifier ranking embryos by score according to their likelihood of clinical pregnancy. Higher AI score brackets were associated with increased fetal heartbeat (FH) likelihood across all evaluated datasets, showing a trend of increasing odds ratios (OR). The highest OR was observed in the top G4 bracket (test dataset G4 score >= 7.5: OR 3.84; independent dataset G4 score >= 7.5: OR 4.01), while the lowest was in the G1 bracket (test dataset G1 score < 4.0: OR 0.40; independent dataset G1 score < 4.0: OR 0.45). AI score brackets G2, G3, and G4 displayed OR values above 1.0 (P < 0.05), indicating linear associations with FH likelihood. Average AI scores were consistently higher for FH-positive than for FH-negative embryos within each age subgroup. Positive correlations were also observed between AI scores and key morphologic parameters used to predict embryo quality. Conclusions Strong AI performance across multiple datasets demonstrates the value of our four-step methodology in developing and validating the AI as a reliable adjunct to embryo evaluation.

Dades de la publicació

ISSN/ISSNe:
1477-7827, 1477-7827

REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY  BIOMED CENTRAL LTD

Tipus:
Article
Pàgines:
-
PubMed:
39891250
Factor d'Impacte:
1,198 SCImago
Quartil:
Q1 SCImago

Documents

  • No hi ha documents

Mètriques

Filiacions

Filiacions no disponibles

Projectes associats

Desarrollo de modelos de selección de embriones basados en inteligencia artificial para predecir las condiciones ideales que mejoren la probabilidad de éxito de un tratamiento de reproducción asistida.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

PI21/00283 . INSTITUTO DE SALUD CARLOS III . 2022

Efecto de la morfología y morfocinética del blastocisto biopsiado en la supervivencia y resultados clínicos después del procedimiento de vitrificación-desvitrificación.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

FPU20/03621 . MINISTERIO DE CIENCIA E INNOVACION; MINISTERIO DE UNIVERSIDADES . 2021

Desarrollo e implementación de un algoritmo basado en inteligencia artificial para la selección de embriones desvitrificados a partir de datos morfológicos, morfocinéticos y secretómicos

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

CIACIF/2021/019 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2022

Desarrollo funcional y clínico del algoritmo de Inteligencia Artificial SSE (Software para la Selección de Espermatozoides basado en IA) en tratamientos de fecundación in vitro (FIV).

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

CIACIF/2022/438 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2023

Desarrollo y validación de una herramienta de inteligencia artificial para la optimización de los tratamientos hormonales en reproducción asistida.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

PI24/00755 . INSTITUTO DE SALUD CARLOS III . 2025

Compartir la publicació