A Combination of Artificial Intelligence with Genetic Algorithms on Static Time-Lapse Images Improves Consistency in Blastocyst Assessment, An Interpretable Tool to Automate Human Embryo Evaluation: A Retrospective Cohort Study

Fecha de publicación:

Autores de IIS La Fe

Participantes ajenos a IIS La Fe

  • Toschi, Marco
  • Rocha, Jose Celso
  • Hickman, Cristina
  • Nogueira, Marcelo Fabio Gouveia
  • Ferreira, Andre Satoshi
  • Maffeis, Murilo Costa
  • Malmsten, Jonas
  • Zhan, Qiansheng
  • Zaninovic, Nikica

Grupos

Abstract

Background: In recent times, various algorithms have been developed to assist in the selection of embryos for transfer based on artificial intelligence (AI). Nevertheless, the majority of AI models employed in this context were characterized by a lack of transparency. To address these concerns, we aim to design an interpretable tool to automate human embryo evaluation by combining artificial neural networks (ANNs) and genetic algorithms (GA). Materials and Methods: This retrospective cohort study included 223 human blastocyst time-lapse (TL) images taken at 110 hours post-injection. All the images were evaluated by five embryologists from different clinics in terms of blastocyst expansion (BE), quality of the inner cell mass (ICM), and trophectoderm (TE). The embryo database was used to develop an AI system (70% training, 15% validation, and 15% test) for automate blastocyst assessment. The entire set of images underwent a standardization process, followed by processing and segmentation using Matlab software. The resulting quantified variables were utilized in AI techniques (ANN and GA). Finally, the accuracy and performance of the automation tool was assessed with the area under the receiver operating characteristic (ROC) curve (AUC). Then, the level of agreement among embryologists and between embryologists and the AI system was compared with Kappa Index. Results: The overall agreement among embryologists was low (Kappa: 0.4 for BE; and 0.3 for TE and ICM). The AI tool achieved higher consistency (Kappa 0.7 for BE and ICM; and 0.4 for TE). The AI exhibited high accuracy in classifying BE (test 81.5%), ICM (test 78.8%), and TE (test 78.3%) and better performance for BE (AUC 0.888-0.956) than for ICM (AUC 0.605-0.854) and TE (AUC 0.726-0.769) assessment. Conclusion: Our AI tool highlighted the superior consistency of AI compared to human operators in grading blastocyst morphology. This research represents an important step towards fully automating objective embryo evaluation.

Datos de la publicación

ISSN/ISSNe:
2008-076X, 2008-0778

INTERNATIONAL JOURNAL OF FERTILITY & STERILITY  Royan Institute

Tipo:
Article
Páginas:
378-383
Factor de Impacto:
0,465 SCImago
Cuartil:
Q2 SCImago

Documentos

  • No hay documentos

Filiaciones

Filiaciones no disponibles

Keywords

  • Artificial Intelligence; Blastocyst; Time-Lapse

Campos de estudio

Proyectos asociados

Estudio del efecto del estrés en la ventana de implantación y su influencia en el éxito reproductivo

Investigador Principal: PATRICIA DÍAZ GIMENO

FPU19/03247 . MINISTERIO DE CIENCIA E INNOVACION . 2020

Desarrollo de modelos de selección de embriones basados en inteligencia artificial para predecir las condiciones ideales que mejoren la probabilidad de éxito de un tratamiento de reproducción asistida.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

PI21/00283 . INSTITUTO DE SALUD CARLOS III . 2022

Efecto de la morfología y morfocinética del blastocisto biopsiado en la supervivencia y resultados clínicos después del procedimiento de vitrificación-desvitrificación.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

FPU20/03621 . MINISTERIO DE CIENCIA E INNOVACION; MINISTERIO DE UNIVERSIDADES . 2021

Desarrollo e implementación de un algoritmo basado en inteligencia artificial para la selección de embriones desvitrificados a partir de datos morfológicos, morfocinéticos y secretómicos

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

CIACIF/2021/019 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2022

Desarrollo funcional y clínico del algoritmo de Inteligencia Artificial SSE (Software para la Selección de Espermatozoides basado en IA) en tratamientos de fecundación in vitro (FIV).

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

CIACIF/2022/438 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2023

Cita

Compartir