External validation of a fully automated evaluation tool: a retrospective analysis on 68,471 scored embryos.

Fecha de publicación: Fecha Ahead of Print:

Autores de IIS La Fe

Participantes ajenos a IIS La Fe

  • Toschi M
  • Delgado A
  • Pellicer A

Grupos

Abstract

OBJECTIVE: To externally validate a fully automated embryo classification in in vitro fertilization (IVF) treatments. DESIGN: Retrospective cohort study SUBJECTS: A total of 6,434 patients undergoing 7,352 IVF treatments contributed 70,456 embryos. EXPOSURE: Embryos were evaluated by conventional morphology and retrospectively scored using a fully automated deep learning-based algorithm across conventional IVF, oocyte donation, and PGT-A cycles. MAIN OUTCOME MEASURES: The primary outcomes were implantation and live birth including odds ratios (ORs) from generalized estimating equation (GEE) models. Secondary outcomes were embryo morphology, euploidy and miscarriage. Exploratory outcomes included comparison between conventional methodology and artificial intelligence (AI) algorithm with areas under the ROC curves (AUCs), agreement degree between AI and embryologists, Cohen's Kappa coefficient and relative risk (RR). RESULTS: Implantation and live birth rates increased as the automatic embryo score rose. The GEE model, controlling for confounders, showed the automatic score was associated with an OR of 1.31 (95%CI[1.25-1.36]) for implantation in treatments using oocytes from patients, and an OR of 1.17 (95%CI[1.14-1.20]) in the oocyte donation program, with no significant association in PGT-A treatments. For live birth, the ORs were 1.27 (95%CI[1.21-1.33]) for patients, 1.16 (95%CI[1.13-1.19]) for donors, and 1.05 (95%CI[1-1.10]) for PGT-A cycles. The average score was higher in embryos with better morphology, in euploid embryos compared to aneuploid embryos, and in embryos that resulted in a full-term pregnancy compared to those that miscarried. Concordance between the highest-scoring embryo and the embryo with the best conventional morphology was 71.4%(95%CI[67.7%-75.0%]) in treatments with patient oocytes and 61.0%(95%CI[58.6%-63.4%]) in the oocyte donation program. Overall, the Cohen's Kappa coefficient was 0.63. The automatic embryo score showed similar AUCs to conventional morphology, although implantation was higher when the transferred embryo matched the highest-scoring embryo from each cohort (57.36% vs. 49.98%). RR indicated a 1.14-fold increase in implantation likelihood when the top-ranked embryo was transferred. CONCLUSION: Fully automated embryo scoring effectively ranked embryos based on their potential for implantation and live birth. The performance of the conventional methodology was comparable to that of the artificial intelligence-based technology; however, better clinical outcomes were observed when the highest-scoring embryo in the cohort was transferred.

Copyright © 2024. Published by Elsevier Inc.

Datos de la publicación

ISSN/ISSNe:
0015-0282, 1556-5653

FERTILITY AND STERILITY  ELSEVIER SCIENCE INC

Tipo:
Article
Páginas:
-
Factor de Impacto:
1,895 SCImago
Cuartil:
Q1 SCImago

Documentos

  • No hay documentos

Métricas

Filiaciones mostrar / ocultar

Keywords

  • Automation; concordance; embryo selection; implantation; live birth

Campos de estudio

Proyectos asociados

Estudio del efecto del estrés en la ventana de implantación y su influencia en el éxito reproductivo

Investigador Principal: PATRICIA DÍAZ GIMENO

FPU19/03247 . MINISTERIO DE CIENCIA E INNOVACION . 2020

Desarrollo de modelos de selección de embriones basados en inteligencia artificial para predecir las condiciones ideales que mejoren la probabilidad de éxito de un tratamiento de reproducción asistida.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

PI21/00283 . INSTITUTO DE SALUD CARLOS III . 2022

Efecto de la morfología y morfocinética del blastocisto biopsiado en la supervivencia y resultados clínicos después del procedimiento de vitrificación-desvitrificación.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

FPU20/03621 . MINISTERIO DE CIENCIA E INNOVACION; MINISTERIO DE UNIVERSIDADES . 2021

Desarrollo e implementación de un algoritmo basado en inteligencia artificial para la selección de embriones desvitrificados a partir de datos morfológicos, morfocinéticos y secretómicos

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

CIACIF/2021/019 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2022

Desarrollo funcional y clínico del algoritmo de Inteligencia Artificial SSE (Software para la Selección de Espermatozoides basado en IA) en tratamientos de fecundación in vitro (FIV).

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

CIACIF/2022/438 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2023

Cita

Compartir