A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study.

Data de publicació:

Autors de IIS La Fe

Autors aliens a IIS La Fe

  • Barnes, Josue
  • Brendel, Matthew
  • Gao, Vianne R.
  • Rajendran, Suraj
  • Kim, Junbum
  • Li, Qianzi
  • Malmsten, Jonas E.
  • Sierra, Jose
  • Zisimopoulos, Pantelis
  • Sigaras, Alexandros
  • Khosravi, Pegah
  • Zhan, Qiansheng
  • Rosenwaks, Zev
  • Elemento, Olivier
  • Zaninovic, Nikica
  • Hajirasouliha, Iman

Grups d'Investigació

Abstract

BACKGROUND: One challenge in the field of in-vitro fertilisation is the selection of the most viable embryos for transfer. Morphological quality assessment and morphokinetic analysis both have the disadvantage of intra-observer and inter-observer variability. A third method, preimplantation genetic testing for aneuploidy (PGT-A), has limitations too, including its invasiveness and cost. We hypothesised that differences in aneuploid and euploid embryos that allow for model-based classification are reflected in morphology, morphokinetics, and associated clinical information. METHODS: In this retrospective study, we used machine-learning and deep-learning approaches to develop STORK-A, a non-invasive and automated method of embryo evaluation that uses artificial intelligence to predict embryo ploidy status. Our method used a dataset of 10 378 embryos that consisted of static images captured at 110 h after intracytoplasmic sperm injection, morphokinetic parameters, blastocyst morphological assessments, maternal age, and ploidy status. Independent and external datasets, Weill Cornell Medicine EmbryoScope+ (WCM-ES+; Weill Cornell Medicine Center of Reproductive Medicine, NY, USA) and IVI Valencia (IVI Valencia, Health Research Institute la Fe, Valencia, Spain) were used to test the generalisability of STORK-A and were compared measuring accuracy and area under the receiver operating characteristic curve (AUC). FINDINGS: Analysis and model development included the use of 10 378 embryos, all with PGT-A results, from 1385 patients (maternal age range 21-48 years; mean age 36·98 years [SD 4·62]). STORK-A predicted aneuploid versus euploid embryos with an accuracy of 69·3% (95% CI 66·9-71·5; AUC 0·761; positive predictive value [PPV] 76·1%; negative predictive value [NPV] 62·1%) when using images, maternal age, morphokinetics, and blastocyst score. A second classification task trained to predict complex aneuploidy versus euploidy and single aneuploidy produced an accuracy of 74·0% (95% CI 71·7-76·1; AUC 0·760; PPV 54·9%; NPV 87·6%) using an image, maternal age, morphokinetic parameters, and blastocyst grade. A third classification task trained to predict complex aneuploidy versus euploidy had an accuracy of 77·6% (95% CI 75·0-80·0; AUC 0·847; PPV 76·7%; NPV 78·0%). STORK-A reported accuracies of 63·4% (AUC 0·702) on the WCM-ES+ dataset and 65·7% (AUC 0·715) on the IVI Valencia dataset, when using an image, maternal age, and morphokinetic parameters, similar to the STORK-A test dataset accuracy of 67·8% (AUC 0·737), showing generalisability. INTERPRETATION: As a proof of concept, STORK-A shows an ability to predict embryo ploidy in a non-invasive manner and shows future potential as a standardised supplementation to traditional methods of embryo selection and prioritisation for implantation or recommendation for PGT-A. FUNDING: US National Institutes of Health.

Copyright © 2023 Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.

Dades de la publicació

ISSN/ISSNe:
2589-7500, 2589-7500

LANCET DIGITAL HEALTH  Elsevier Ltd.

Tipus:
Article
Pàgines:
28-40
PubMed:
36543475
Factor d'Impacte:
6,024 SCImago
Quartil:
Q1 SCImago

Cites Rebudes en Web of Science: 4

Documents

  • No hi ha documents

Mètriques

Filiacions mostrar / ocultar

Keywords

  • RISK CLASSIFICATION; HUMAN EMBRYOS; ANEUPLOIDY; SELECTION; EUPLOIDY; AGE

Campos d'Estudi

Projectes associats

Estudio de los efectos de la reactivación de la telomerasa con Danazol en la función ovárica

Investigador Principal: MARÍA ELISA VARELA SANZ

FPU18/04068 . MINISTERIO DE CIENCIA E INNOVACION . 2019

Estudio del efecto del estrés en la ventana de implantación y su influencia en el éxito reproductivo

Investigador Principal: PATRICIA DÍAZ GIMENO

FPU19/03247 . MINISTERIO DE CIENCIA E INNOVACION . 2020

Contratos Sara Borrell 2020. BUIGUES MONFORT, ANNA

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

CD20/00116 . INSTITUTO DE SALUD CARLOS III . 2021

Desarrollo de modelos de selección de embriones basados en inteligencia artificial para predecir las condiciones ideales que mejoren la probabilidad de éxito de un tratamiento de reproducción asistida.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

PI21/00283 . INSTITUTO DE SALUD CARLOS III . 2022

Efecto de la morfología y morfocinética del blastocisto biopsiado en la supervivencia y resultados clínicos después del procedimiento de vitrificación-desvitrificación.

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

FPU20/03621 . MINISTERIO DE CIENCIA E INNOVACION; MINISTERIO DE UNIVERSIDADES . 2021

Desarrollo e implementación de un algoritmo basado en inteligencia artificial para la selección de embriones desvitrificados a partir de datos morfológicos, morfocinéticos y secretómicos

Investigador Principal: MARCOS MESEGUER ESCRIVÁ

CIACIF/2021/019 . CONSELLERIA DE INNOVACIÓN, UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL . 2022

Compartir la publicació