Obtaining patient phenotypes in SARS-CoV-2 pneumonia, and their association with clinical severity and mortality

Fecha de publicación:

Autores de IIS La Fe

Participantes ajenos a IIS La Fe

  • Garcia-Garcia, Fernando
  • Lee, Dae-Jin
  • Espana, Pedro Pablo
  • Ruiz Iturriaga, Luis Alberto
  • Martinez-Minaya, Joaquin
  • Hayet-Otero, Miren
  • Arostegui, Inmaculada
  • Nieves-Ermecheo, Monica
  • Uranga, Ane
  • Bronte, Olaia
  • Urrutia, Isabel
  • Quintana, Jose Maria
  • Garcia-Gutierre, Susana
  • Perez, Maria Gascon
  • Villanueva, Ane
  • Jimenez, Paula Gonzalez
  • Cilloniz, Catia
  • Fernandez, Leyre Serrano
  • Huguet, Eva Tabernero
  • Iturriaga, Luis Alberto Ruiz
  • Jorge, Rafael Zalacain
  • COVID 19 & Air Pollut Working Grp

Grupos

Abstract

Background There exists consistent empirical evidence in the literature pointing out ample heterogeneity in terms of the clinical evolution of patients with COVID-19. The identification of specific phenotypes underlying in the population might contribute towards a better understanding and characterization of the different courses of the disease. The aim of this study was to identify distinct clinical phenotypes among hospitalized patients with SARS-CoV-2 pneumonia using machine learning clustering, and to study their association with subsequent clinical outcomes as severity and mortality.Methods Multicentric observational, prospective, longitudinal, cohort study conducted in four hospitals in Spain. We included adult patients admitted for in-hospital stay due to SARS-CoV-2 pneumonia. We collected a broad spectrum of variables to describe exhaustively each case: patient demographics, comorbidities, symptoms, physiological status, baseline examinations (blood analytics, arterial gas test), etc. For the development and internal validation of the clustering/phenotype models, the dataset was split into training and test sets (50% each). We proposed a sequence of machine learning stages: feature scaling, missing data imputation, reduction of data dimensionality via Kernel Principal Component Analysis (KPCA), and clustering with the k-means algorithm. The optimal cluster model parameters -including k, the number of phenotypes- were chosen automatically, by maximizing the average Silhouette score across the training set.Methods Multicentric observational, prospective, longitudinal, cohort study conducted in four hospitals in Spain. We included adult patients admitted for in-hospital stay due to SARS-CoV-2 pneumonia. We collected a broad spectrum of variables to describe exhaustively each case: patient demographics, comorbidities, symptoms, physiological status, baseline examinations (blood analytics, arterial gas test), etc. For the development and internal validation of the clustering/phenotype models, the dataset was split into training and test sets (50% each). We proposed a sequence of machine learning stages: feature scaling, missing data imputation, reduction of data dimensionality via Kernel Principal Component Analysis (KPCA), and clustering with the k-means algorithm. The optimal cluster model parameters -including k, the number of phenotypes- were chosen automatically, by maximizing the average Silhouette score across the training set.Results We enrolled 1548 patients, each of them characterized by 92 clinical attributes (d=109 features after variable encoding). Our clustering algorithm identified k=3 distinct phenotypes and 18 strongly informative variables: Phenotype A (788 cases [50. 9% prevalence] - age similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 57, Charlson comorbidity similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 1, pneumonia CURB-65 score similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 0 to 1, respiratory rate at admission similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 18 min-1, FiO2 similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 21%, C-reactive protein CRP similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 49.5 mg/dL [median within cluster]); phenotype B (620 cases [40.0%] - age similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 75, Charlson similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 5, CURB-65 similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 1 to 2, respiration similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 20 min-1, FiO2 similar to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 21%

Datos de la publicación

ISSN/ISSNe:
2200-6133,

PNEUMONIA  BMC

Tipo:
Article
Páginas:
12-12
PubMed:
38915125

Documentos

  • No hay documentos

Métricas

Filiaciones

Filiaciones no disponibles

Keywords

  • COVID-19; SARS-CoV-2 pneumonia; Phenotypes; Clustering; Unsupervised machine learning

Cita

Compartir