Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects
Fecha de publicación:
Fecha Ahead of Print:
Autores de IIS La Fe
Participantes ajenos a IIS La Fe
- Kondylakis, Haridimos
- Kalokyri, Varvara
- Sfakianakis, Stelios
- Marias, Kostas
- Tsiknakis, Manolis
- Jimenez-Pastor, Ana
- Camacho-Ramos, Eduardo
- Segrelles, J. Damian
- Lopez-Huguet, Sergio
- Barelle, Caroline
- Kogut-Czarkowska, Magdalena
- Tsakou, Gianna
- Siopis, Nikolaos
- Sakellariou, Zisis
- Bizopoulos, Paschalis
- Drossou, Vicky
- Lalas, Antonios
- Votis, Konstantinos
- Mallol, Pedro
- Alberich, Leonor Cerda
- Seymour, Karine
- Boucher, Samuel
- Ciarrocchi, Esther
- Fromont, Lauren
- Rambla, Jordi
- Harms, Alexander
- Gutierrez, Andrea
- Starmans, Martijn P. A.
- Prior, Fred
- Gelpi, Josep Ll
- Lekadir, Karim
Grupos
Abstract
Artificial intelligence (AI) is transforming the field of medical imaging and has the potential to bring medicine from the era of 'sick-care' to the era of healthcare and prevention. The development of AI requires access to large, complete, and harmonized real-world datasets, representative of the population, and disease diversity. However, to date, efforts are fragmented, based on single-institution, size-limited, and annotation-limited datasets. Available public datasets (e.g., The Cancer Imaging Archive, TCIA, USA) are limited in scope, making model generalizability really difficult. In this direction, five European Union projects are currently working on the development of big data infrastructures that will enable European, ethically and General Data Protection Regulation-compliant, quality-controlled, cancer-related, medical imaging platforms, in which both large-scale data and AI algorithms will coexist. The vision is to create sustainable AI cloud-based platforms for the development, implementation, verification, and validation of trustable, usable, and reliable AI models for addressing specific unmet needs regarding cancer care provision. In this paper, we present an overview of the development efforts highlighting challenges and approaches selected providing valuable feedback to future attempts in the area.
© 2023. The Author(s).
Datos de la publicación
- ISSN/ISSNe:
- 2509-9280, 2509-9280
- Tipo:
- Article
- Páginas:
- 20-20
- PubMed:
- 37150779
- Factor de Impacto:
- 1,049 SCImago ℠
- Cuartil:
- Q1 SCImago ℠
European Radiology Experimental SPRINGERNATURE
Citas Recibidas en Web of Science: 2
Documentos
- No hay documentos
Filiaciones
Keywords
- Artificial intelligence; Data anonymization; Data management; Diagnostic imaging; Neoplasms
Cita
Kondylakis H,Kalokyri V,Sfakianakis S,Marias K,Tsiknakis M,Jimenez A,Camacho E,BLANQUER I,Segrelles JD,Lopez S,Barelle C,Kogut M,Tsakou G,Siopis N,Sakellariou Z,Bizopoulos P,Drossou V,Lalas A,Votis K,Mallol P,MARTI L,Alberich LC,Seymour K,Boucher S,Ciarrocchi E,Fromont L,Rambla J,Harms A,Gutierrez A,Starmans MPA,Prior F,Gelpi JLL,Lekadir K. Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects. Eur. Radiol. Exp. 2023. 7. (1):p. 20-20.
Portal de investigación