RENEB Inter-Laboratory Comparison 2021: The Dicentric Chromosome Assay.

Fecha de publicación: Fecha Ahead of Print:

Autores de IIS La Fe

Participantes ajenos a IIS La Fe

  • Endesfelder, D
  • Oestreicher, U
  • Bucher, M
  • Beinke, C
  • Siebenwirth, C
  • Ainsbury, E
  • Moquet, J
  • Gruel, G
  • Gregoire, E
  • Martinez, J S
  • Vral, A
  • Baeyens, A
  • Valente, M
  • Terzoudi, G
  • Triantopoulou, S
  • Pantelias, A
  • Gil, O Monteiro
  • Prieto, M J
  • Domene, M M
  • Zafiropoulos, D
  • Barquinero, J F
  • Pujol-Canadell, M
  • Lumniczky, K
  • Hargitai, R
  • Kis, E
  • Testa, A
  • Patrono, C
  • Sommer, S
  • Hristova, R
  • Kostova, N
  • Atanasova, M
  • Sevriukova, O
  • Dominguez, I
  • Pastor, N
  • Guclu, I
  • Pajic, J
  • Sabatier, L
  • Brochard, P
  • Tichy, A
  • Milanova, M
  • Finot, F
  • Petrenci, C Cuceu
  • Wilkins, R C
  • Beaton-Green, L A
  • Seong, K M
  • Lee, Y
  • Lee, Y H
  • Balajee, A S
  • Maznyk, N
  • Sypko, T
  • Pham, N D
  • Tran, T M
  • Miura, T
  • Suto, Y
  • Akiyamam, M
  • Tsuyama, N
  • Abe, Y
  • Goh, V S T
  • Chua, C E L
  • Abend, M
  • Port, M

Grupos

Abstract

After large-scale radiation accidents where many individuals are suspected to be exposed to ionizing radiation, biological and physical retrospective dosimetry assays are important tools to aid clinical decision making by categorizing individuals into unexposed/minimally, moderately or highly exposed groups. Quality-controlled inter-laboratory comparisons of simulated accident scenarios are regularly performed in the frame of the European legal association RENEB (Running the European Network of Biological and Physical retrospective Dosimetry) to optimize international networking and emergency readiness in case of large-scale radiation events. In total 33 laboratories from 22 countries around the world participated in the current RENEB inter-laboratory comparison 2021 for the dicentric chromosome assay. Blood was irradiated in vitro with X rays (240 kVp, 13 mA, 75 keV, 1 Gy/min) to simulate an acute, homogeneous whole-body exposure. Three blood samples (no. 1: 0 Gy, no. 2: 1.2 Gy, no. 3: 3.5 Gy) were sent to each participant and the task was to culture samples, to prepare slides and to assess radiation doses based on the observed dicentric yields from 50 manually or 150 semi-automatically scored metaphases (triage mode scoring). Approximately two-thirds of the participants applied calibration curves from irradiations with gamma rays and about 1/3 from irradiations with X rays with varying energies. The categorization of the samples in clinically relevant groups corresponding to individuals that were unexposed/minimally (0-1 Gy), moderately (1-2 Gy) or highly exposed (>2 Gy) was successfully performed by all participants for sample no. 1 and no. 3 and by =74% for sample no. 2. However, while most participants estimated a dose of exactly 0 Gy for the sham-irradiated sample, the precise dose estimates of the samples irradiated with doses >0 Gy were systematically higher than the corresponding reference doses and showed a median deviation of 0.5 Gy (sample no. 2) and 0.95 Gy (sample no. 3) for manual scoring. By converting doses estimated based on gamma-ray calibration curves to X-ray doses of a comparable mean photon energy as used in this exercise, the median deviation decreased to 0.27 Gy (sample no. 2) and 0.6 Gy (sample no. 3). The main aim of biological dosimetry in the case of a large-scale event is the categorization of individuals into clinically relevant groups, to aid clinical decision making. This task was successfully performed by all participants for the 0 Gy and 3.5 Gy samples and by 74% (manual scoring) and 80% (semi-automatic scoring) for the 1.2 Gy sample. Due to the accuracy of the dicentric chromosome assay and the high number of participating laboratories, a systematic shift of the dose estimates could be revealed. Differences in radiation quality (X ray vs. gamma ray) between the test samples and the applied dose effect curves can partly explain the systematic shift. There might be several additional reasons for the observed bias (e.g., donor effects, transport, experimental conditions or the irradiation setup) and the analysis of these reasons provides great opportunities for future research. The participation of laboratories from countries around the world gave the opportunity to compare the results on an international level.

© 2023 by Radiation Research Society.

Datos de la publicación

ISSN/ISSNe:
0033-7587, 1938-5404

Radiation research  Radiation Research Society

Tipo:
Article
Páginas:
556-570
Factor de Impacto:
0,765 SCImago
Cuartil:
Q1 SCImago

Citas Recibidas en Web of Science: 2

Documentos

  • No hay documentos

Métricas

Filiaciones mostrar / ocultar

Keywords

  • RETROSPECTIVE DOSIMETRY METHODS; IONIZING-RADIATION BIOMARKERS; BIOLOGICAL DOSIMETRY; INTERCOMPARISON EXERCISE; HUMAN-LYMPHOCYTES; PERIPHERAL-BLOOD; DOSE-RESPONSE; IN-VITRO; X-RAYS; ABERRATIONS

Proyectos asociados

REALIZING THE EUROPEAN NETWORK IN BIODOSIMETRY (RENEB)

295513_RENEB_PE_MONTORO_FP7-Fission-2011 . FUNDACIÓN PARA LA INVESTIGACIÓN DEL HOSPITAL UNIVERSITARIO LA FE DE LA COMUNIDAD VALENCIANA . 2012

CONTROL Y SEGUIMIENTO INTEGRAL DE LA RADIACIÓN IONIZANTE RECIBIDA TRAS EXPLORACIONES MÉDICAS: COSIRI.

Investigador Principal: ÁNGEL ALBERICH BAYARRI

GV/2015/132 . FUNDACIÓN PARA LA INVESTIGACIÓN DEL HOSPITAL UNIVERSITARIO LA FE DE LA COMUNIDAD VALENCIANA; CONSELLERIA DE EDUCACION . 2015

Papel de la biodosimetría en la optimización del uso de 131I-MIBG como intensificación del tratamiento del neuroblastoma de alto riesgo.

Investigador Principal: JULIA BALAGUER GUILL

JBG-IOD-2017-01 . 2024

Elaboración de un protocolo nacional en dosimetría biológica.

Investigador Principal: ALEGRÍA MONTORO PASTOR

2023-094-1_CSN_MONTORO . CONSEJO DE SEGURIDAD NUCLEAR . 2022

Cita

Compartir