Position of the AI for Health Imaging (AI4HI) network on metadata models for imaging biobanks

Autores de IIS La Fe
Participantes ajenos a IIS La Fe
- Kondylakis, Haridimos
- Ciarrocchi, Esther
- Chouvarda, Ioanna
- Fromont, Lauren A.
- Garcia-Aznar, Jose Manuel
- Kalokyri, Varvara
- Kosvyra, Alexandra
- Walker, Dawn
- Yang, Guang
- Neri, Emanuele
- AIHealthImaging Working Grp Metada
Abstract
A huge amount of imaging data is becoming available worldwide and an incredible range of possible improvements can be provided by artificial intelligence algorithms in clinical care for diagnosis and decision support. In this context, it has become essential to properly manage and handle these medical images and to define which metadata have to be considered, in order for the images to provide their full potential. Metadata are additional data associated with the images, which provide a complete description of the image acquisition, curation, analysis, and of the relevant clinical variables associated with the images. Currently, several data models are available to describe one or more subcategories of metadata, but a unique, common, and standard data model capable of fully representing the heterogeneity of medical metadata has not been yet developed. This paper reports the state of the art on metadata models for medical imaging, the current limitations and further developments, and describes the strategy adopted by the Horizon 2020 ``AI for Health Imaging'' projects, which are all dedicated to the creation of imaging biobanks.
© 2022. The Author(s) under exclusive licence to European Society of Radiology.
Datos de la publicación
- ISSN/ISSNe:
- 2509-9280, 2509-9280
- Tipo:
- Article
- Páginas:
- 29-29
- Factor de Impacto:
- 1,049 SCImago ℠
- Cuartil:
- Q1 SCImago ℠
European Radiology Experimental SPRINGERNATURE
Citas Recibidas en Web of Science: 8
Documentos
- No hay documentos
Filiaciones
Keywords
- Artificial intelligence; Diagnostic imaging; Metadata; Radiomics; Radiation therapy
Proyectos asociados
PRIMAGE. PREDICTIVE IN-SILICO MULTISCALE ANALYTICS TO SUPPORT CANCER PERSONALIZED DIAGNOSIS AND PROGNOSIS, EMPOWERED BY IMAGING BIOMARKERS.
Investigador Principal: LUIS MARTÍ BONMATÍ
826494 . COMISION EUROPEA . 2018
PerProGlio. Integrative Personal Omics Profiles in Glioblastoma Recurrence and Therapy Resistance.
Investigador Principal: LUIS MARTÍ BONMATÍ
AC18/00077 . COMISION EUROPEA . 2019
PROCANCER-I: AN AI PLATFORM INTEGRATING IMAGING DATA AND MODELS, SUPPORTING PRECISION CARE THROUGH PROSTATE CANCER’S CONTINUUM.
Investigador Principal: LUIS MARTÍ BONMATÍ
952159 . COMISION EUROPEA . 2020
CHAIMELEON. ACCELERATING THE LAB TO MARKET TRANSITION OF AI TOOLS FOR CANCER MANAGEMENT.
Investigador Principal: LUIS MARTÍ BONMATÍ
952172 . COMISION EUROPEA . 2020
Ciencia de Datos. iDATA-MP - Infraestructura de datos para Medicina Personalizada.
Investigador Principal: LUIS MARTÍ BONMATÍ
IMP/00019 . INSTITUTO DE SALUD CARLOS III . 2021
Resonancia Magnética y Biomarcadores de imagen para el mapeo, localización de focos de espermatogénesis y guiado de las biopsias testiculares en pacientes con azoospermia no obstructiva.
Investigador Principal: JOSÉ REMOHÍ GIMÉNEZ
PI21/00424 . INSTITUTO DE SALUD CARLOS III . 2022
Cita
Kondylakis H,Ciarrocchi E,Cerda L,Chouvarda I,Fromont LA,Garcia JM,Kalokyri V,Kosvyra A,Walker D,Yang G,Neri E,AIHealthImaging Working Metada GRP. Position of the AI for Health Imaging (AI4HI) network on metadata models for imaging biobanks. Eur Radiol Exp. 2022. 6. (1):p. 29-29.