Position of the AI for Health Imaging (AI4HI) network on metadata models for imaging biobanks

Fecha de publicación: Fecha Ahead of Print:

Autores de IIS La Fe

Participantes ajenos a IIS La Fe

  • Kondylakis, Haridimos
  • Ciarrocchi, Esther
  • Chouvarda, Ioanna
  • Fromont, Lauren A.
  • Garcia-Aznar, Jose Manuel
  • Kalokyri, Varvara
  • Kosvyra, Alexandra
  • Walker, Dawn
  • Yang, Guang
  • Neri, Emanuele
  • AIHealthImaging Working Grp Metada

Abstract

A huge amount of imaging data is becoming available worldwide and an incredible range of possible improvements can be provided by artificial intelligence algorithms in clinical care for diagnosis and decision support. In this context, it has become essential to properly manage and handle these medical images and to define which metadata have to be considered, in order for the images to provide their full potential. Metadata are additional data associated with the images, which provide a complete description of the image acquisition, curation, analysis, and of the relevant clinical variables associated with the images. Currently, several data models are available to describe one or more subcategories of metadata, but a unique, common, and standard data model capable of fully representing the heterogeneity of medical metadata has not been yet developed. This paper reports the state of the art on metadata models for medical imaging, the current limitations and further developments, and describes the strategy adopted by the Horizon 2020 ``AI for Health Imaging'' projects, which are all dedicated to the creation of imaging biobanks.

© 2022. The Author(s) under exclusive licence to European Society of Radiology.

Datos de la publicación

ISSN/ISSNe:
2509-9280, 2509-9280

European Radiology Experimental  SPRINGERNATURE

Tipo:
Article
Páginas:
29-29
Factor de Impacto:
1,049 SCImago
Cuartil:
Q1 SCImago

Citas Recibidas en Web of Science: 8

Documentos

  • No hay documentos

Filiaciones mostrar / ocultar

Keywords

  • Artificial intelligence; Diagnostic imaging; Metadata; Radiomics; Radiation therapy

Proyectos asociados

PRIMAGE. PREDICTIVE IN-SILICO MULTISCALE ANALYTICS TO SUPPORT CANCER PERSONALIZED DIAGNOSIS AND PROGNOSIS, EMPOWERED BY IMAGING BIOMARKERS.

Investigador Principal: LUIS MARTÍ BONMATÍ

826494 . COMISION EUROPEA . 2018

PerProGlio. Integrative Personal Omics Profiles in Glioblastoma Recurrence and Therapy Resistance.

Investigador Principal: LUIS MARTÍ BONMATÍ

AC18/00077 . COMISION EUROPEA . 2019

PROCANCER-I: AN AI PLATFORM INTEGRATING IMAGING DATA AND MODELS, SUPPORTING PRECISION CARE THROUGH PROSTATE CANCER’S CONTINUUM.

Investigador Principal: LUIS MARTÍ BONMATÍ

952159 . COMISION EUROPEA . 2020

CHAIMELEON. ACCELERATING THE LAB TO MARKET TRANSITION OF AI TOOLS FOR CANCER MANAGEMENT.

Investigador Principal: LUIS MARTÍ BONMATÍ

952172 . COMISION EUROPEA . 2020

Ciencia de Datos. iDATA-MP - Infraestructura de datos para Medicina Personalizada.

Investigador Principal: LUIS MARTÍ BONMATÍ

IMP/00019 . INSTITUTO DE SALUD CARLOS III . 2021

Resonancia Magnética y Biomarcadores de imagen para el mapeo, localización de focos de espermatogénesis y guiado de las biopsias testiculares en pacientes con azoospermia no obstructiva.

Investigador Principal: JOSÉ REMOHÍ GIMÉNEZ

PI21/00424 . INSTITUTO DE SALUD CARLOS III . 2022

Resonancia Magnética y biomarcadores de imagen para el mapeo, localización de focos de espermatogénesis y guiado de las biopsias testiculares en pacientes con azoospermia no obstructiva.

Investigador Principal: SATURNINO LUJÁN MARCO

2003-FIVI-021-NG . 2021

Cita

Compartir