Human vs. machine vs. core lab for the assessment of coronary atherosclerosis with lumen and vessel contour segmentation with intravascular ultrasound
Autores de IIS La Fe
Participantes ajenos a IIS La Fe
- Bass, Ronald D.
- Garcia-Garcia, Hector M.
- Ziemer, Paulo G. P.
- Bulant, Carlos A.
- Kuku, Kayode K.
- Kahsay, Yirga A.
- Beyene, Solomon
- Melaku, Gebremedhin
- Otsuka, Tatsuhiko
- Choi, JooHee
- Fernandez-Peregrina, Estefania
- Erdogan, Emrah
- Gonzalo, Nieves
- Bourantas, Christos, V
- Blanco, Pablo J.
- Raber, Lorenz
Grupos
Abstract
A machine learning (ML) algorithm for automatic segmentation of intravascular ultrasound was previously validated. It has the potential to improve efficiency, accuracy and precision of coronary vessel segmentation compared to manual segmentation by interventional cardiology experts. The aim of this study is to compare the performance of human readers to the machine and against the readings from a Core Laboratory. This is a post-hoc, cross-sectional analysis of the IBIS-4 study. Forty frames were randomly selected and analyzed by 10 readers of varying expertise two separate times, 1 week apart. Their measurements of lumen, vessel, plaque areas, and plaque burden were performed in an offline software. Among humans, the intra-observer variability was not statistically significant. For the total 80 frames, inter-observer variability between human readers, the ML algorithm and Core Laboratory for lumen area, vessel area, plaque area and plaque burden were not statistically different. For lumen area, however, relative differences between the human readers and the Core Lab ranged from 0.26 to 12.61%. For vessel area, they ranged from 1.25 to 9.54%. Efficiency between the ML algorithm and the readers differed notably. Humans spent 47 min on average to complete the analyses, while the ML algorithm took on average less than 1 min. The overall lumen, vessel and plaque means analyzed by humans and the proposed ML algorithm are similar to those of the Core Lab. Machines, however, are more time efficient. It is warranted to consider use of the ML algorithm in clinical practice.
Datos de la publicación
- ISSN/ISSNe:
- 1569-5794, 1573-0743
- Tipo:
- Article
- Páginas:
- 1431-1439
- Factor de Impacto:
- 0,694 SCImago ℠
- Cuartil:
- Q2 SCImago ℠
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING Kluwer Academic Publishers
Citas Recibidas en Web of Science: 1
Documentos
- No hay documentos
Filiaciones
Keywords
- Intravascular ultrasound; Machine learning; Artificial intelligence; Coronary artery disease
Proyectos asociados
MECANISMOS DE ENFERMEDAD EN LA MIOCARDIOPATIA ARRITMOGENICA, MEJORAS EN SU DIAGNOSTICO Y BUSQUEDA DE DIANAS TERAPEUTICAS.
Investigador Principal: ESTHER ZORIO GRIMA
PI14/01477 . INSTITUTO DE SALUD CARLOS III . 2015
INCORPORACIÓN GRUPOS CIBER. DR. DOLZ
Investigador Principal: LUIS VICENTE MARTÍNEZ DOLZ
CB16/11/00261 . INSTITUTO DE SALUD CARLOS III . 2017
ESTUDIO MULTICÉNTRICO, ALEATORIZADO, DOBLE CIEGO, BASADO EN EVENTOS, QUE COMPARA LA EFICACIA Y SEGURIDAD DE RIVAROXABAN CON PLACEBO EN LA REDUCCIÓN DEL RIESGO DE MUERTE, INFARTO DE MIOCARDIO O ICTUS, EN PACIENTES CON INSUFICIENCIA CARDIACA Y ENFERMEDAD ARTERIAL CORONARIA SIGNIFICATIVA TRAS UN EPISODIO DE INSUFICIENCIA CARDIACA DESCOMPENSADA.
Investigador Principal: LUIS ALMENAR BONET
RIVAROXHFA3001/BAY59-7939/16302 . 2013
EVALUACIÓN, EN PACIENTES CON PROCESOS MÉDICOS, DE RIVAROXABAN FRENTE A PLACEBO EN LA REDUCCIÓN DEL RIESGO DE TROMBOEMBOLISMO VENOSO DESPUÉS DEL ALTA HOSPITALARIA. (MARINER).
Investigador Principal: JOSÉ ANTONIO TODOLÍ PARRA
RIVAROXDVT3002/BAY59-7939/17261
Ensayo clínico aleatorizado para evaluar el efecto de los betabloqueantes y los antiagregantes plaquetarios en pacientes con disección espontánea de la arteria coronaria.
Investigador Principal: JOSÉ LUIS DÍEZ GIL
BA-SCAD . 2021
ASSESSING THE EFFECT OF DAPAGLIFOZIN ON PLAQUE PROGRESSION IN PATIENTS UNDERGOING TRANSCATHETER AORTIC VALVE IMPLANTATION DAPA-PLACA.
Investigador Principal: JORGE SANZ SÁNCHEZ
DAPA-PLACA . 2021
Uninterrupted direct-acting oral anticoagulation in patients undergoing transradial percutaneous coronary procedures. DOAC-NOSTOP.
Investigador Principal: JORGE SANZ SÁNCHEZ
DOAC-NOSTOP . 2021
Cita
Bass RD,Garcia HM,Sanz J,Ziemer PGP,Bulant CA,Kuku KK,Kahsay YA,Beyene S,Melaku G,Otsuka T,Choi J,Fernandez E,Erdogan E,Gonzalo N,V,Blanco PJ,Raber L. Human vs. machine vs. core lab for the assessment of coronary atherosclerosis with lumen and vessel contour segmentation with intravascular ultrasound. Int J Cardiovasc Imaging. 2022. 38. (7):p. 1431-1439. IF:2,100. (3).